Z-Test: Formula, Examples, Uses, Z-Test vs T-Test

Interesting Science Videos

Z-test Definition

z-test is a statistical tool used for the comparison or determination of the significance of several statistical measures, particularly the mean in a sample from a normally distributed population or between two independent samples.

  • Like t-tests, z tests are also based on normal probability distribution.
  • Z-test is the most commonly used statistical tool in research methodology, with it being used for studies where the sample size is large (n>30).
  • In the case of the z-test, the variance is usually known.
  • Z-test is more convenient than t-test as the critical value at each significance level in the confidence interval is the sample for all sample sizes.
  • A z-score is a number indicating how many standard deviations above or below the mean of the population is.
Z Test Formula

Z-test formula

For the normal population with one sample:

Z-test formula one sample

where xฬ„  is the mean of the sample, and ยต is the assumed mean, ฯƒ is the standard deviation, and n is the number of observations.

z-test for the difference in mean: 

z-test formula for the difference in mean

where xฬ„1 and xฬ„2 are the means of two samples, ฯƒ is the standard deviation of the samples, and n1 and n2 are the numbers of observations of two samples.

One sample z-test (one-tailed z-test)

  • One sample z-test is used to determine whether a particular population parameter, which is mostly mean, significantly different from an assumed value.
  • It helps to estimate the relationship between the mean of the sample and the assumed mean.
  • In this case, the standard normal distribution is used to calculate the critical value of the test.
  • If the z-value of the sample being tested falls into the criteria for the one-sided tets, the alternative hypothesis will be accepted instead of the null hypothesis.
  • A one-tailed test would be used when the study has to test whether the population parameter being tested is either lower than or higher than some hypothesized value.
  • A one-sample z-test assumes that data are a random sample collected from a normally distributed population that all have the same mean and same variance.
  • This hypothesis implies that the data is continuous, and the distribution is symmetric.
  • Based on the alternative hypothesis set for a study, a one-sided z-test can be either a left-sided z-test or a right-sided z-test. 
  • For instance, if our H0: ยต0 = ยต and Ha: ยต < ยต0, such a test would be a one-sided test or more precisely, a left-tailed test and there is one rejection area only on the left tail of the distribution.
  • However, if H0: ยต = ยต0 and Ha: ยต > ยต0, this is also a one-tailed test (right tail), and the rejection region is present on the right tail of the curve.

Two sample z-test (two-tailed z-test)

  • In the case of two sample z-test, two normally distributed independent samples are required.
  • A two-tailed z-test is performed to determine the relationship between the population parameters of the two samples.
  • In the case of the two-tailed z-test, the alternative hypothesis is accepted as long as the population parameter is not equal to the assumed value.
  • The two-tailed test is appropriate when we have H0: ยต = ยต0 and Ha: ยต โ‰  ยต0 which may mean ยต > ยต0 or ยต < ยต0
  • Thus, in a two-tailed test, there are two rejection regions, one on each tail of the curve.

Z-test examples

If a sample of 400 male workers has a mean height of 67.47 inches, is it reasonable to regard the sample as a sample from a large population with a mean height of 67.39 inches and a standard deviation of 1.30 inches at a 5% level of significance?

Taking the null hypothesis that the mean height of the population is equal to 67.39 inches, we can write:                           

H0 : ยต = 67.39

Ha: ยต โ‰  67.39

xฬ„ = 67.47“, ฯƒ = 1.30“, n = 400

Assuming the population to be normal, we can work out the test statistic z as under:

Z test formula one sample

Z = 1.231

Z-test examples

z-test applications

  • Z-test is performed in studies where the sample size is larger, and the variance is known.
  • It is also used to determine if there is a significant difference between the mean of two independent samples.
  • The z-test can also be used to compare the population proportion to an assumed proportion or to determine the difference between the population proportion of two samples.

Z-test vs T-test (8 major differences)

Basis for comparison

T-test

Z-test

DefinitionThe t-test is a test in statistics that is used for testing hypotheses regarding the mean of a small sample taken population when the standard deviation of the population is not known.z-test is a statistical tool used for the comparison or determination of the significance of several statistical measures, particularly the mean in a sample from a normally distributed population or between two independent samples.
Sample sizeThe t-test is usually performed in samples of a smaller size (nโ‰ค30).z-test is generally performed in samples of a larger size (n>30).
Type of distribution of populationt-test is performed on samples distributed on the basis of t-distribution.z-tets is performed on samples that are normally distributed.
AssumptionsA t-test is not based on the assumption that all key points on the sample are independent.z-test is based on the assumption that all key points on the sample are independent.
Variance or standard deviationVariance or standard deviation is not known in the t-test.Variance or standard deviation is known in z-test.
DistributionThe sample values are to be recorded or calculated by the researcher.In a normal distribution, the average is considered 0 and the variance as 1.
Population parametersIn addition, to the mean, the t-test can also be used to compare partial or simple correlations among two samples.In addition, to mean, z-test can also be used to compare the population proportion.
Conveniencet-tests are less convenient as they have separate critical values for different sample sizes.z-test is more convenient as it has the same critical value for different sample sizes.

References and Sources

  • C.R. Kothari (1990) Research Methodology. Vishwa Prakasan. India.
  • https://ncss-wpengine.netdna-ssl.com/wp-content/themes/ncss/pdf/Procedures/PASS/One-Sample_Z-Tests.pdf
  • https://www.wallstreetmojo.com/z-test-vs-t-test/
  • https://sites.google.com/site/fundamentalstatistics/chapter-13
  • 3% – https://www.investopedia.com/terms/z/z-test.asp
  • 2% – https://www.coursehero.com/file/61052903/Questions-statisticswpdf/
  • 2% – https://towardsdatascience.com/everything-you-need-to-know-about-hypothesis-testing-part-i-4de9abebbc8a
  • 2% – https://ncss-wpengine.netdna-ssl.com/wp-content/themes/ncss/pdf/Procedures/PASS/One-Sample_Z-Tests.pdf
  • 1% – https://www.slideshare.net/MuhammadAnas96/ztest-with-examples
  • 1% – https://www.mathandstatistics.com/learn-stats/hypothesis-testing/two-tailed-z-test-hypothesis-test-by-hand
  • 1% – https://www.infrrr.com/proportions/difference-in-proportions-hypothesis-test-calculator
  • 1% – https://keydifferences.com/difference-between-t-test-and-z-test.html
  • 1% – https://en.wikipedia.org/wiki/Z-test
  • 1% – http://www.sci.utah.edu/~arpaiva/classes/UT_ece3530/hypothesis_testing.pdf
  • <1% – https://www.researchgate.net/post/Can-a-null-hypothesis-be-stated-as-a-difference
  • <1% – https://www.isixsigma.com/tools-templates/hypothesis-testing/making-sense-two-sample-t-test/
  • <1% – https://www.investopedia.com/terms/t/two-tailed-test.asp
  • <1% – https://www.academia.edu/24313503/BIOSTATISTICS_AND_RESEARCH_METHODS_IN_PHARMACY_Pharmacy_C479_4_quarter_credits_A_Course_for_Distance_Learning_Prepared

About Author

Photo of author

Anupama Sapkota

Anupama Sapkota has a bachelorโ€™s degree (B.Sc.) in Microbiology from St. Xavier's College, Kathmandu, Nepal. She is particularly interested in studies regarding antibiotic resistance with a focus on drug discovery.

2 thoughts on “Z-Test: Formula, Examples, Uses, Z-Test vs T-Test”

  1. The formula for Z test provided for testing the single mean is wrong. The correct formula is
    wrong. Please check and correct it. It should be Z = (????ฬ…โˆ’????)/????/โˆšn

    Reply
    • Hi Ramnath, Sorry for the mistake. Thank you so much for the correction. We have updated the page with correct formula.

      Reply

Leave a Comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.